Cuprins:

Măsurarea accelerației folosind H3LIS331DL și fotonul de particule: 4 pași
Măsurarea accelerației folosind H3LIS331DL și fotonul de particule: 4 pași

Video: Măsurarea accelerației folosind H3LIS331DL și fotonul de particule: 4 pași

Video: Măsurarea accelerației folosind H3LIS331DL și fotonul de particule: 4 pași
Video: EXPERIMENTE 01 (Determinarea accelerației gravitaționale prin metoda pendulului gravitațional) 2024, Noiembrie
Anonim
Image
Image

H3LIS331DL, este un accelerometru liniar cu 3 axe de înaltă performanță, de mică putere, aparținând familiei „nano”, cu interfață serială digitală I²C. H3LIS331DL are scale complete selectabile de utilizator de ± 100g / ± 200g / ± 400g și este capabil să măsoare accelerații cu rate de date de ieșire de la 0,5 Hz la 1 kHz. H3LIS331DL funcționează pe o gamă extinsă de temperatură de la -40 ° C la +85 ° C.

În acest tutorial vom demonstra interfața H3LIS331DL cu fotonul particulelor.

Pasul 1: Hardware necesar:

Hardware necesar
Hardware necesar
Hardware necesar
Hardware necesar
Hardware necesar
Hardware necesar

Materialele de care avem nevoie pentru îndeplinirea obiectivului nostru includ următoarele componente hardware:

1. H3LIS331DL

2. Fotonul particulelor

3. Cablu I2C

4. Ecran I2C pentru fotonul particulelor

Pasul 2: conectare hardware:

Conectare hardware
Conectare hardware
Conectare hardware
Conectare hardware

Secțiunea de conectare hardware explică practic conexiunile de cablare necesare între senzor și fotonul particulelor. Asigurarea conexiunilor corecte este necesitatea de bază în timp ce lucrați la orice sistem pentru ieșirea dorită. Deci, conexiunile necesare sunt următoarele:

H3LIS331DL va funcționa pe I2C. Iată exemplul schemei de cablare, care demonstrează cum se conectează fiecare interfață a senzorului.

Out-of-the-box, placa este configurată pentru o interfață I2C, ca atare, vă recomandăm să utilizați această conexiune dacă sunteți altfel agnostic. Nu ai nevoie decât de patru fire!

Sunt necesare doar patru conexiuni Vcc, Gnd, SCL și pinii SDA și acestea sunt conectate cu ajutorul cablului I2C.

Aceste conexiuni sunt prezentate în imaginile de mai sus.

Pasul 3: Cod pentru măsurarea accelerării:

Cod pentru măsurarea accelerării
Cod pentru măsurarea accelerării

Să începem cu codul particulei acum.

În timp ce utilizați modulul senzor cu arduino, includem biblioteca application.h și spark_wiring_i2c.h. Biblioteca „application.h” și spark_wiring_i2c.h conține funcțiile care facilitează comunicarea i2c între senzor și particulă.

Întregul cod de particule este dat mai jos pentru confortul utilizatorului:

#include

#include

// Adresa H2LIS331DL I2C este 0x18 (24)

#define Addr 0x18

int xAccl = 0, yAccl = 0, zAccl = 0;

configurare nulă ()

{

// Setați variabila

Particle.variable ("i2cdevice", "H3LIS331DL");

Particle.variable ("xAccl", xAccl);

Particle.variable ("yAccl", yAccl);

Particle.variable ("zAccl", zAccl);

// Inițializați comunicarea I2C ca MASTER

Wire.begin ();

// Inițializați comunicarea serială, setați rata de transmisie = 9600

Serial.begin (9600);

// Porniți transmisia I2C

Wire.beginTransmission (Addr);

// Selectați registrul de control 1

Wire.write (0x20);

// Activați axele X, Y, Z, modul de pornire, rata de ieșire a datelor 50Hz

Wire.write (0x27);

// Opriți transmisia I2C

Wire.endTransmission ();

// Porniți transmisia I2C

Wire.beginTransmission (Addr);

// Selectați registrul de control 4

Wire.write (0x23);

// Setați scala completă, +/- 100g, actualizare continuă

Wire.write (0x00);

// Opriți transmisia I2C

Wire.endTransmission ();

întârziere (300);

}

bucla nulă ()

{

date int nesemnate [6];

for (int i = 0; i <6; i ++)

{

// Porniți transmisia I2C

Wire.beginTransmission (Addr);

// Selectați registrul de date

Wire.write ((40 + i));

// Opriți transmisia I2C

Wire.endTransmission ();

// Solicitați 1 octet de date

Wire.requestFrom (Addr, 1);

// Citiți 6 octeți de date

// xAccl lsb, xAccl msb, yAccl lsb, yAccl msb, zAccl lsb, zAccl msb

if (Wire.available () == 1)

{

date = Wire.read ();

}

întârziere (300);

}

// Conversia datelor

int xAccl = ((date [1] * 256) + date [0]);

if (xAccl> 32767)

{

xAccl - = 65536;

}

int yAccl = ((date [3] * 256) + date [2]);

if (yAccl> 32767)

{

yAccl - = 65536;

}

int zAccl = ((date [5] * 256) + date [4]);

if (zAccl> 32767)

{

zAccl - = 65536;

}

// Ieșire date în tabloul de bord

Particle.publish ("Accelerarea în axa X este:", Șir (xAccl));

Particle.publish ("Accelerarea în axa Y este:", Șir (yAccl));

Particle.publish („Accelerarea în Z-Axis este:”, String (zAccl));

întârziere (300);

}

Funcția Particle.variable () creează variabilele pentru a stoca ieșirea senzorului și funcția Particle.publish () afișează ieșirea pe tabloul de bord al site-ului.

Ieșirea senzorului este prezentată în imaginea de mai sus pentru referință.

Pasul 4: Aplicații:

Aplicații
Aplicații

Accelerometrele precum H3LIS331DL își găsesc în mare parte aplicația în jocuri și în comutarea profilului de afișare. Acest modul senzor este utilizat și în sistemul avansat de gestionare a energiei pentru aplicații mobile. H3LIS331DL este un senzor digital de accelerație triaxial care este încorporat cu un controler inteligent de întrerupere declanșat de mișcare pe cip.

Recomandat: