Cuprins:
- Pasul 1: Hardware necesar:
- Pasul 2: conectare hardware:
- Pasul 3: Cod pentru măsurarea temperaturii:
- Pasul 4: Aplicații:
Video: Monitorizarea temperaturii folosind MCP9808 și fotonul de particule: 4 pași
2024 Autor: John Day | [email protected]. Modificat ultima dată: 2024-01-30 11:43
MCP9808 este un senzor digital de temperatură extrem de precis ± 0,5 ° C mini modul I2C. Acestea sunt înglobate cu registre programabile de utilizator care facilitează aplicațiile de detectare a temperaturii. Senzorul de temperatură de înaltă precizie MCP9808 a devenit un standard industrial în ceea ce privește factorul de formă și inteligența, oferind semnale calibrate, linearizate ale senzorului în format digital, I2C.
În acest tutorial a fost demonstrată interfața modulului senzor MCP9808 cu fotonul particulelor. Pentru a citi valorile temperaturii, am folosit raspberry pi cu un adaptor I2c. Acest adaptor I2C face conexiunea la modulul senzor mai ușoară și mai fiabilă.
Pasul 1: Hardware necesar:
Materialele de care avem nevoie pentru îndeplinirea obiectivului nostru includ următoarele componente hardware:
1. MCP9808
2. Fotonul particulelor
3. Cablu I2C
4. Scutul I2C pentru fotonul particulelor
Pasul 2: conectare hardware:
Secțiunea de conectare hardware explică practic conexiunile de cablare necesare între senzor și fotonul particulelor. Asigurarea conexiunilor corecte este necesitatea de bază în timp ce lucrați la orice sistem pentru ieșirea dorită. Deci, conexiunile necesare sunt următoarele:
MCP9808 va funcționa pe I2C. Iată exemplul schemei de cablare, care demonstrează cum se conectează fiecare interfață a senzorului.
Out-of-the-box, placa este configurată pentru o interfață I2C, ca atare, vă recomandăm să utilizați această conexiune dacă sunteți altfel agnostic. Nu ai nevoie decât de patru fire!
Sunt necesare doar patru conexiuni Vcc, Gnd, SCL și pinii SDA și acestea sunt conectate cu ajutorul cablului I2C.
Aceste conexiuni sunt prezentate în imaginile de mai sus.
Pasul 3: Cod pentru măsurarea temperaturii:
Să începem cu codul de particule acum.
În timp ce utilizați modulul senzor cu arduino, includem biblioteca application.h și spark_wiring_i2c.h. Biblioteca „application.h” și spark_wiring_i2c.h conține funcțiile care facilitează comunicarea i2c între senzor și particulă.
Întregul cod de particule este dat mai jos pentru confortul utilizatorului:
#include
#include
// Adresa I2C MCP9808 este 0x18 (24)
#define Addr 0x18
float cTemp = 0, fTemp = 0;
configurare nulă ()
{
// Setați variabila
Particle.variable ("i2cdevice", "MCP9808");
Particle.variable ("cTemp", cTemp);
// Inițializați comunicarea I2C ca MASTER
Wire.begin ();
// Inițializați comunicarea în serie, setați baud rate = 9600
Serial.begin (9600);
// Porniți transmisia I2C
Wire.beginTransmission (Addr);
// Selectați registrul de configurare
Wire.write (0x01);
// Mod de conversie continuă, implicit de pornire
Wire.write (0x00);
Wire.write (0x00);
// Opriți transmisia I2C
Wire.endTransmission ();
// Porniți transmisia I2C
Wire.beginTransmission (Addr);
// Selectați rezoluția rgister
Wire.write (0x08);
// Rezoluție = +0.0625 / C
Wire.write (0x03);
// Opriți transmisia I2C
Wire.endTransmission ();
întârziere (300);
}
bucla nulă ()
{
date int nesemnate [2];
// Pornește comunicarea I2C
Wire.beginTransmission (Addr);
// Selectați registrul de date
Wire.write (0x05);
// Opriți transmisia I2C
Wire.endTransmission ();
// Solicitați 2 octeți de date
Wire.requestFrom (Addr, 2);
// Citiți 2 octeți de date
// temp msb, temp lsb
if (Wire.available () == 2)
{
date [0] = Wire.read ();
date [1] = Wire.read ();
}
întârziere (300);
// Convertiți datele în 13 biți
int temp = ((date [0] & 0x1F) * 256 + date [1]);
dacă (temp> 4095)
{
temp - = 8192;
}
cTemp = temp * 0,0625;
fTemp = cTemp * 1,8 + 32;
// Ieșire date în tabloul de bord
Particle.publish ("Temperatura în grade Celsius:", Șir (cTemp));
Particle.publish ("Temperatura în Fahrenheit:", String (fTemp));
întârziere (500);
}
Funcția Particle.variable () creează variabilele pentru a stoca ieșirea senzorului și funcția Particle.publish () afișează ieșirea pe tabloul de bord al site-ului.
Ieșirea senzorului este prezentată în imaginea de mai sus pentru referință.
Pasul 4: Aplicații:
Senzorul digital de temperatură MCP9808 are mai multe aplicații la nivel de industrie care încorporează congelatoare și frigidere industriale împreună cu diverse procesoare de alimente. Acest senzor poate fi utilizat pentru diverse computere personale, servere, precum și alte periferice pentru PC.
Recomandat:
Măsurarea temperaturii folosind MCP9803 și fotonul de particule: 4 pași
Măsurarea temperaturii utilizând MCP9803 și fotonul de particule: MCP9803 este un senzor de temperatură cu precizie de 2 fire. Acestea sunt înglobate cu registre programabile de utilizator care facilitează aplicațiile de detectare a temperaturii. Acest senzor este potrivit pentru un sistem de monitorizare a temperaturii multi-zone extrem de sofisticat
Monitorizarea panoului solar folosind fotonul de particule: 7 pași
Monitorizarea panourilor solare folosind fotonul de particule: Scopul proiectului este de a îmbunătăți eficiența panourilor solare. Proiectul este conceput pentru a supraveghea generarea de energie solară fotovoltaică pentru a spori performanța, monitorizarea și întreținerea centralei solare. În acest proiect, particula ph
Măsurarea temperaturii folosind STS21 și fotonul de particule: 4 pași
Măsurarea temperaturii utilizând STS21 și fotonul cu particule: senzorul digital de temperatură STS21 oferă performanțe superioare și o amprentă de economisire a spațiului. Oferă semnale calibrate, liniarizate în format digital, I2C. Fabricarea acestui senzor se bazează pe tehnologia CMOSens, care se atribuie superiorului
Monitorizarea temperaturii și umidității folosind SHT25 și fotonul de particule: 5 pași
Monitorizarea temperaturii și umidității folosind SHT25 și fotonul de particule: Am lucrat recent la diverse proiecte care necesită monitorizarea temperaturii și umidității și apoi ne-am dat seama că acești doi parametri joacă de fapt un rol esențial în a avea o estimare a eficienței de lucru a unui sistem. Atât la industria
Măsurarea temperaturii folosind TMP112 și fotonul de particule: 4 pași
Măsurarea temperaturii utilizând TMP112 și fotonul de particule: TMP112 Modul I2C MINI de înaltă precizie, putere redusă și senzor digital de temperatură. TMP112 este ideal pentru măsurarea extinsă a temperaturii. Acest dispozitiv oferă o precizie de ± 0,5 ° C fără a necesita calibrare sau condiționarea semnalului extern al componentelor