Cuprins:
- Pasul 1: Hardware necesar:
- Pasul 2: conectare hardware:
- Pasul 3: Cod Java pentru măsurarea temperaturii:
- Pasul 4: Aplicații:
Video: Măsurarea temperaturii folosind TMP112 și Raspberry Pi: 4 pași
2024 Autor: John Day | [email protected]. Modificat ultima dată: 2024-01-30 11:43
TMP112 Senzor digital de temperatură de înaltă precizie, putere redusă, modul I2C MINI. TMP112 este ideal pentru măsurarea extinsă a temperaturii. Acest dispozitiv oferă o precizie de ± 0,5 ° C fără a necesita calibrare sau condiționarea semnalului componentelor externe.
În acest tutorial este demonstrată interfața modulului senzor TMP112 cu raspberry pi și a fost ilustrată și programarea acestuia folosind limbajul Java. Pentru a citi valorile temperaturii, am folosit raspberry pi cu un adaptor I2c. Acest adaptor I2C face conexiunea la modulul senzor mai ușoară și mai fiabilă.
Pasul 1: Hardware necesar:
Materialele de care avem nevoie pentru îndeplinirea obiectivului nostru includ următoarele componente hardware:
1. TMP112
2. Raspberry Pi
3. Cablu I2C
4. I2C Shield pentru zmeură pi
Pasul 2: conectare hardware:
Secțiunea de conectare hardware explică practic conexiunile de cablare necesare între senzor și raspberry pi. Asigurarea conexiunilor corecte este necesitatea de bază în timp ce lucrați la orice sistem pentru ieșirea dorită. Deci, conexiunile necesare sunt următoarele:
TMP112 va funcționa pe I2C. Iată exemplul schemei de cablare, care demonstrează cum se conectează fiecare interfață a senzorului.
Out-of-the-box, placa este configurată pentru o interfață I2C, ca atare, vă recomandăm să utilizați această conexiune dacă sunteți altfel agnostic. Nu ai nevoie decât de patru fire!
Sunt necesare doar patru conexiuni Vcc, Gnd, SCL și pinii SDA și acestea sunt conectate cu ajutorul cablului I2C.
Aceste conexiuni sunt prezentate în imaginile de mai sus.
Pasul 3: Cod Java pentru măsurarea temperaturii:
Avantajul utilizării raspberry pi este că vă oferă flexibilitatea limbajului de programare în care doriți să programați placa pentru a interfața senzorul cu aceasta. Profitând de acest avantaj al acestei plăci, demonstrăm aici că programează în Java. Codul java pentru TMP112 poate fi descărcat din comunitatea noastră GitHub care este Dcube Store.
Pe lângă ușurința utilizatorilor, explicăm și codul aici:
Ca prim pas al codării, trebuie să descărcați biblioteca pi4j în cazul java, deoarece această bibliotecă acceptă funcțiile utilizate în cod. Deci, pentru a descărca biblioteca puteți vizita următorul link:
pi4j.com/install.html
Puteți copia codul Java funcțional pentru acest senzor și de aici:
import com.pi4j.io.i2c. I2CBus;
import com.pi4j.io.i2c. I2CDevice;
import com.pi4j.io.i2c. I2CFactory;
import java.io. IOException;
clasa publica TMP112
{
public static main principal (String args ) aruncă Excepție
{
// Creați autobuzul I2C
I2CBus bus = I2CFactory.getInstance (I2CBus. BUS_1);
// Obțineți dispozitivul I2C, adresa TMP112 I2C este 0x48 (72)
I2CDevice device = bus.getDevice (0x48);
octet config = octet nou [2];
// Mod de conversie continuă, rezoluție pe 12 biți, coadă de erori este 1
config [0] = (octet) 0x60;
// Polaritate scăzută, termostat în modul comparator, dezactivează modul închidere
config [1] = (octet) 0xA0;
// Scrieți config pentru a înregistra 0x01 (1)
device.write (0x01, config, 0, 2);
Thread.sleep (500);
// Citiți 2 octeți de date de la adresa 0x00 (0), msb mai întâi
octet date = octet nou [2];
device.read (0x00, date, 0, 2);
// Conversia datelor
int temp = (((date [0] & 0xFF) * 256) + (date [1] & 0xFF)) / 16;
dacă (temp> 2047)
{
temp - = 4096;
}
cTemp dublu = temp * 0,0625;
fTemp dublu = cTemp * 1,8 + 32;
// Ieșire pe ecran
System.out.printf („Temperatura în grade Celsius este:%.2f C% n”, cTemp);
System.out.printf („Temperatura în Fahrenheit este:%.2f F% n”, fTemp);
}
}
Biblioteca care facilitează comunicarea i2c între senzor și placă este pi4j, diversele sale pachete I2CBus, I2CDevice și I2CFactory ajută la stabilirea conexiunii.
import com.pi4j.io.i2c. I2CBus; import com.pi4j.io.i2c. I2CDevice; import com.pi4j.io.i2c. I2CFactory; import java.io. IOException;
Funcțiile write () și read () sunt folosite pentru a scrie anumite comenzi în senzor pentru a-l face să funcționeze într-un anumit mod și, respectiv, pentru a citi ieșirea senzorului.
Ieșirea senzorului este, de asemenea, prezentată în imaginea de mai sus.
Pasul 4: Aplicații:
Diferite aplicații care încorporează senzor digital de temperatură TMP112 cu putere redusă și precizie ridicată includ monitorizarea temperaturii alimentării cu energie, protecție termică periferică a computerului, gestionarea bateriei, precum și mașini de birou.
Recomandat:
Măsurarea temperaturii folosind AD7416ARZ și Raspberry Pi: 4 pași
Măsurarea temperaturii folosind AD7416ARZ și Raspberry Pi: AD7416ARZ este un senzor de temperatură de 10 biți cu patru convertizoare analogice la un singur canal și un senzor de temperatură încorporat în acesta. Senzorul de temperatură de pe piese poate fi accesat prin canale multiplexor. Această temperatură de înaltă precizie
Măsurarea temperaturii folosind TMP112 și Arduino Nano: 4 pași
Măsurarea temperaturii folosind TMP112 și Arduino Nano: modulul senzor de temperatură digital I2C MINI de înaltă precizie, putere redusă, TMP112. TMP112 este ideal pentru măsurarea extinsă a temperaturii. Acest dispozitiv oferă o precizie de ± 0,5 ° C fără a necesita calibrare sau condiționarea semnalului extern al componentelor
Măsurarea temperaturii folosind STS21 și Raspberry Pi: 4 pași
Măsurarea temperaturii folosind STS21 și Raspberry Pi: senzorul digital de temperatură STS21 oferă performanțe superioare și o amprentă de economisire a spațiului. Oferă semnale calibrate, liniarizate în format digital, I2C. Fabricarea acestui senzor se bazează pe tehnologia CMOSens, care se atribuie superiorului
Măsurarea temperaturii folosind TMP112 și fotonul de particule: 4 pași
Măsurarea temperaturii utilizând TMP112 și fotonul de particule: TMP112 Modul I2C MINI de înaltă precizie, putere redusă și senzor digital de temperatură. TMP112 este ideal pentru măsurarea extinsă a temperaturii. Acest dispozitiv oferă o precizie de ± 0,5 ° C fără a necesita calibrare sau condiționarea semnalului extern al componentelor
Măsurarea umidității și temperaturii folosind HTS221 și Raspberry Pi: 4 pași
Măsurarea umidității și temperaturii folosind HTS221 și Raspberry Pi: HTS221 este un senzor digital capacitiv ultra compact pentru umiditate relativă și temperatură. Include un element de detectare și un circuit integrat specific aplicației de semnal mixt (ASIC) pentru a furniza informațiile de măsurare prin serial digital