Cuprins:
2025 Autor: John Day | [email protected]. Modificat ultima dată: 2025-01-23 15:04
Senzorul digital de temperatură STS21 oferă performanțe superioare și o amprentă de economisire a spațiului. Oferă semnale calibrate, liniarizate în format digital, I2C. Fabricarea acestui senzor se bazează pe tehnologia CMOSens, care se atribuie performanței și fiabilității superioare a STS21. Rezoluția STS21 poate fi modificată prin comandă, bateria descărcată poate fi detectată și o sumă de control ajută la îmbunătățirea fiabilității comunicării.
În acest tutorial a fost ilustrată interfața modulului senzor STS21 cu arduino nano. Pentru a citi valorile de temperatură, am folosit arduino cu un adaptor I2c. Acest adaptor I2C face conexiunea la modulul senzor ușoară și mai fiabilă.
Pasul 1: Hardware necesar:
Materialele de care avem nevoie pentru îndeplinirea obiectivului nostru includ următoarele componente hardware:
1. STS21
2. Arduino Nano
3. Cablu I2C
4. Scut I2C pentru arduino nano
Pasul 2: conectare hardware:
Secțiunea de conectare hardware explică practic conexiunile de cablare necesare între senzor și arduino nano. Asigurarea conexiunilor corecte este necesitatea de bază în timp ce lucrați la orice sistem pentru ieșirea dorită. Deci, conexiunile necesare sunt următoarele:
STS21 va funcționa pe I2C. Iată exemplul schemei de cablare, care demonstrează cum se conectează fiecare interfață a senzorului.
Out-of-the-box, placa este configurată pentru o interfață I2C, ca atare, vă recomandăm să utilizați această conexiune dacă sunteți altfel agnostic. Nu ai nevoie decât de patru fire!
Sunt necesare doar patru conexiuni Vcc, Gnd, SCL și pinii SDA și acestea sunt conectate cu ajutorul cablului I2C.
Aceste conexiuni sunt prezentate în imaginile de mai sus.
Pasul 3: Cod pentru măsurarea temperaturii:
Să începem cu codul Arduino acum.
În timp ce utilizați modulul senzor cu Arduino, includem biblioteca Wire.h. Biblioteca „Wire” conține funcțiile care facilitează comunicarea i2c între senzor și placa Arduino.
Întregul cod Arduino este dat mai jos pentru confortul utilizatorului:
#include
// Adresa STS21 I2C este 0x4A (74)
#define addr 0x4A
configurare nulă ()
{
// Inițializați comunicarea I2C ca MASTER
Wire.begin ();
// Începeți comunicarea în serie, setați baud rate = 9600
Serial.begin (9600);
întârziere (300);
}
bucla nulă ()
{
date int nesemnate [2];
// Porniți transmisia I2C
Wire.beginTransmission (addr);
// Nu selectați niciun master de așteptare
Wire.write (0xF3);
// Termină transmisia I2C
Wire.endTransmission ();
întârziere (300);
// Solicitați 2 octeți de date
Wire.requestFrom (addr, 2);
// Citiți 2 octeți de date
if (Wire.available () == 2)
{
date [0] = Wire.read ();
date [1] = Wire.read ();
}
// Conversia datelor
int rawtmp = data [0] * 256 + data [1];
valoare int = rawtmp & 0xFFFC;
cTemp dublu = -46,85 + (175,72 * (valoare / 65536,0));
fTemp dublu = cTemp * 1,8 + 32;
// Ieșire date pe monitorul serial
Serial.print ("Temperatura în grade Celsius:");
Serial.print (cTemp);
Serial.println ("C");
Serial.print ("Temperatura în Fahrenheit:");
Serial.print (fTemp);
Serial.println ("F");
întârziere (300);
}
În biblioteca de fire Wire.write () și Wire.read () sunt utilizate pentru a scrie comenzile și a citi ieșirea senzorului.
Serial.print () și Serial.println () sunt utilizate pentru a afișa ieșirea senzorului pe monitorul serial al IDE Arduino.
Ieșirea senzorului este prezentată în imaginea de mai sus.
Pasul 4: Aplicații:
Senzorul digital de temperatură STS21 poate fi utilizat în sisteme care necesită o monitorizare a temperaturii de înaltă precizie. Poate fi încorporat în diverse echipamente informatice, echipamente medicale și sisteme de control industrial, cu condiția de măsurare a temperaturii cu precizie competentă.
Recomandat:
Măsurarea temperaturii folosind ADT75 și Arduino Nano: 4 pași
Măsurarea temperaturii utilizând ADT75 și Arduino Nano: ADT75 este un senzor digital de temperatură extrem de precis. Acesta cuprinde un senzor de temperatură de bandă și un convertor analogic digital pe 12 biți pentru monitorizarea și digitalizarea temperaturii. Senzorul său extrem de sensibil îl face suficient de competent pentru mine
Măsurarea umidității și temperaturii folosind HIH6130 și Arduino Nano: 4 pași
Măsurarea umidității și temperaturii folosind HIH6130 și Arduino Nano: HIH6130 este un senzor de umiditate și temperatură cu ieșire digitală. Acești senzori oferă un nivel de precizie de ± 4% HR. Cu stabilitate pe termen lung lider în industrie, I2C digital cu adevărat compensat de temperatură, fiabilitate lider în industrie, eficiență energetică
Măsurarea temperaturii și a umidității folosind HDC1000 și Arduino Nano: 4 pași
Măsurarea temperaturii și a umidității folosind HDC1000 și Arduino Nano: HDC1000 este un senzor digital de umiditate cu senzor de temperatură integrat care oferă o precizie excelentă de măsurare la o putere foarte mică. Dispozitivul măsoară umiditatea pe baza unui nou senzor capacitiv. Senzorii de umiditate și temperatură sunt fac
Măsurarea temperaturii folosind STS21 și Raspberry Pi: 4 pași
Măsurarea temperaturii folosind STS21 și Raspberry Pi: senzorul digital de temperatură STS21 oferă performanțe superioare și o amprentă de economisire a spațiului. Oferă semnale calibrate, liniarizate în format digital, I2C. Fabricarea acestui senzor se bazează pe tehnologia CMOSens, care se atribuie superiorului
Măsurarea temperaturii folosind STS21 și fotonul de particule: 4 pași
Măsurarea temperaturii utilizând STS21 și fotonul cu particule: senzorul digital de temperatură STS21 oferă performanțe superioare și o amprentă de economisire a spațiului. Oferă semnale calibrate, liniarizate în format digital, I2C. Fabricarea acestui senzor se bazează pe tehnologia CMOSens, care se atribuie superiorului