Cuprins:
- Pasul 1: Hardware necesar:
- Pasul 2: conectare hardware:
- Pasul 3: Cod pentru măsurarea presiunii:
- Pasul 4: Aplicații:
Video: Măsurarea presiunii folosind CPS120 și fotonul de particule: 4 pași
2024 Autor: John Day | [email protected]. Modificat ultima dată: 2024-01-30 11:43
CPS120 este un senzor capacitiv de presiune absolută de înaltă calitate și cost redus, cu ieșire complet compensată. Consumă foarte puțină energie și cuprinde un senzor micro-electromecanic (MEMS) ultra mic pentru măsurarea presiunii. Un ADC bazat pe sigma-delta este, de asemenea, încorporat în acesta pentru a îndeplini cerința de ieșire compensată.
În acest tutorial a fost ilustrată interfața modulului senzor CPS120 cu fotonul particulelor. Pentru a citi valorile presiunii, am folosit fotonul cu un adaptor I2c. Acest adaptor I2C face conexiunea la modulul senzor ușoară și mai fiabilă.
Pasul 1: Hardware necesar:
Materialele de care avem nevoie pentru îndeplinirea obiectivului nostru includ următoarele componente hardware:
1. CPS120
2. Fotonul particulelor
3. Cablu I2C
4. Scutul I2C pentru fotonul particulelor
Pasul 2: conectare hardware:
Secțiunea de conectare hardware explică practic conexiunile de cablare necesare între senzor și fotonul particulelor. Asigurarea conexiunilor corecte este necesitatea de bază în timp ce lucrați la orice sistem pentru ieșirea dorită. Deci, conexiunile necesare sunt următoarele:
CPS120 va funcționa pe I2C. Iată exemplul schemei de cablare, care demonstrează cum se conectează fiecare interfață a senzorului.
Out-of-the-box, placa este configurată pentru o interfață I2C, ca atare, vă recomandăm să utilizați această conexiune dacă sunteți altfel agnostic. Nu ai nevoie decât de patru fire!
Sunt necesare doar patru conexiuni Vcc, Gnd, SCL și pinii SDA și acestea sunt conectate cu ajutorul cablului I2C.
Aceste conexiuni sunt prezentate în imaginile de mai sus.
Pasul 3: Cod pentru măsurarea presiunii:
Să începem cu codul de particule acum.
În timp ce utilizați modulul senzor cu Arduino, includem biblioteca application.h și spark_wiring_i2c.h. Biblioteca „application.h” și spark_wiring_i2c.h conține funcțiile care facilitează comunicarea i2c între senzor și particulă.
Întregul cod de particule este dat mai jos pentru confortul utilizatorului:
#include
#include
// Adresa CPS120 I2C este 0x28 (40)
#define Addr 0x28
temperatura dublă = 0,0, presiune = 0,0;
configurare nulă ()
{
// Setați variabila
Particle.variable ("i2cdevice", "CPS120");
Particle.variable ("presiune", presiune);
Particle.variable ("temperatura", temperatura);
// Inițializați comunicarea I2C ca MASTER
Wire.begin ();
// Inițializați comunicarea serială, setați rata de transmisie = 9600
Serial.begin (9600);
}
bucla nulă ()
{
date int nesemnate [4];
// Porniți transmisia I2C
Wire.beginTransmission (Addr);
întârziere (10);
// Opriți transmisia I2C
Wire.endTransmission ();
// Solicitați 4 octeți de date
Wire.requestFrom (Addr, 4);
// Citiți 4 octeți de date
// presiune msb, presiune lsb, temp msb, temp lsb
if (Wire.available () == 4)
{
date [0] = Wire.read ();
date [1] = Wire.read ();
date [2] = Wire.read ();
date [3] = Wire.read ();
}
// Conversia valorilor
presiune = ((((date [0] & 0x3F) * 265 + date [1]) / 16384.0) * 90,0) + 30,0;
cTemp = ((((data [2] * 256) + (data [3] & 0xFC)) / 4.0) * (165.0 / 16384.0)) - 40.0;
fTemp = cTemp * 1,8 + 32;
// Ieșire date în tabloul de bord
Particle.publish ("Presiunea este:", Șir (presiune));
întârziere (1000);
Particle.publish ("Temperatura în grade Celsius:", Șir (cTemp));
întârziere (1000);
Particle.publish ("Temperatura în Fahrenheit:", String (fTemp));
întârziere (1000);
}
Funcția Particle.variable () creează variabilele pentru a stoca ieșirea senzorului și funcția Particle.publish () afișează ieșirea pe tabloul de bord al site-ului.
Ieșirea senzorului este prezentată în imaginea de mai sus pentru referință.
Pasul 4: Aplicații:
CPS120 are o varietate de aplicații. Poate fi utilizat în barometre portabile și staționare, altimetre etc. Presiunea este un parametru important pentru a determina condițiile meteorologice și având în vedere că acest senzor poate fi instalat și în stațiile meteorologice. Poate fi încorporat în sistemele de control al aerului, precum și în sistemele de vid.
Recomandat:
Măsurarea accelerației folosind ADXL345 și fotonul de particule: 4 pași
Măsurarea accelerației folosind ADXL345 și fotonul de particule: ADXL345 este un accelerometru pe 3 axe, cu putere mică, subțire, cu o rezoluție înaltă (13 biți), măsurând până la ± 16 g. Datele de ieșire digitală sunt formatate ca un complement de doi biți pe 16 biți și sunt accesibile prin interfața digitală I2 C. Măsurează
Măsurarea umidității folosind HYT939 și fotonul de particule: 4 pași
Măsurarea umidității folosind HYT939 și fotonul de particule: HYT939 este un senzor digital de umiditate care funcționează pe protocolul de comunicație I2C. Umiditatea este un parametru esențial atunci când vine vorba de sisteme medicale și laboratoare, așa că, pentru a atinge aceste obiective, am încercat să interfațăm HYT939 cu zmeură pi. Eu
Măsurarea accelerației folosind H3LIS331DL și fotonul de particule: 4 pași
Măsurarea accelerației utilizând H3LIS331DL și fotonul de particule: H3LIS331DL, este un accelerometru liniar cu 3 axe de înaltă performanță, de mică putere, aparținând familiei „nano”, cu interfață serială digitală I²C. H3LIS331DL are scale complete selectabile de utilizator de ± 100g / ± 200g / ± 400g și este capabil să măsoare accelerații cu
Măsurarea temperaturii folosind MCP9803 și fotonul de particule: 4 pași
Măsurarea temperaturii utilizând MCP9803 și fotonul de particule: MCP9803 este un senzor de temperatură cu precizie de 2 fire. Acestea sunt înglobate cu registre programabile de utilizator care facilitează aplicațiile de detectare a temperaturii. Acest senzor este potrivit pentru un sistem de monitorizare a temperaturii multi-zone extrem de sofisticat
Măsurarea accelerării folosind BMA250 și fotonul de particule: 4 pași
Măsurarea accelerației folosind BMA250 și fotonul de particule: BMA250 este un accelerometru pe 3 axe, cu putere mică, subțire, cu o rezoluție înaltă (13 biți), măsurând până la ± 16 g. Datele de ieșire digitală sunt formatate ca două bi-16 complement și sunt accesibile prin interfața digitală I2C. Măsurează staticul